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Abstract

We develop a continuation block successive over-relaxation (BSOR)-Lanczos–Galerkin method for the computation

of positive bound states of time-independent, coupled Gross–Pitaevskii equations (CGPEs) which describe a multi-

component Bose–Einstein condensate (BEC). A discretization of the CGPEs leads to a nonlinear algebraic eigenvalue

problem (NAEP). The solution curve with respect to some parameter of the NAEP is then followed by the proposed

method. For a single-component BEC, we prove that there exists a unique global minimizer (the ground state) which is

represented by an ordinary differential equation with the initial value. For a multi-component BEC, we prove that m

identical ground/bound states will bifurcate into m different ground/bound states at a finite repulsive inter-component

scattering length. Numerical results show that various positive bound states of a two/three-component BEC are solved

efficiently and reliably by the continuation BSOR-Lanczos–Galerkin method.
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1. Introduction

In this paper, we mainly propose a continuation block successive over-relaxation (BSOR)-Lanczos–

Galerkin method for the computation of positive bound states of a multi-component Bose–Einstein
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condensate (BEC). It is well-known [4,26,29] that coupled Gross–Pitaevskii equations (CGPEs), also called

coupled nonlinear Schrödinger equations,
i
owjðx; tÞ

ot
¼ �r2wj þ V jðxÞwj þ ajjwjj

2wj þ
X
k 6¼j

bkjjwkj
2wj; ð1:1aÞ

x 2 X � R2 or R3; t > 0; i ¼
ffiffiffiffiffiffiffi
�1
p

; ð1:1bÞ
wjðx; tÞ ¼ 0; x 2 oX; j ¼ 1; . . . ;m ð1:1cÞ
can be used as a mathematical model to describe a multi-component BEC in m different hyperfine spin

states on the corresponding condensate wave functions wj�s. Here, X is a bounded smooth domain,

Vj(x) P 0, j = 1, . . . ,m are magnetic trapping potentials, and the nonnegative constants aj�s and bkj = bjk�s,
k 6¼ j, k, j = 1, . . . ,m are the intra-component and inter-component (repulsive) scattering lengths, respec-

tively, which represent the interactions between like and unlike particles. In fact, for simplicity, here we

choose suitable scales for Planck constant, atom mass and mean number of atoms in hyperfine states to

make the CGPEs (1.1) consistent with the physical model [4]. Furthermore, CGPEs (1.1) conserve the nor-

malization of each component, i.e.
Z
X
jwjðx; tÞj

2
dx ¼ 1; j ¼ 1; . . . ;m. ð1:2Þ
To find solitary wave solutions of the system (1.1), we set
wjðx; tÞ ¼ e�ikjt/jðxÞ; j ¼ 1; . . . ;m. ð1:3Þ
Plugging (1.3) into (1.1a) and using (1.2) gives a nonlinear eigenvalue problem (NEP), also called time-inde-

pendent CGPEs or Hatree–Fock equations [19,20],
�r2/j þ V j/j þ ajj/jj
2/j þ

X
k 6¼j

bkjj/kj
2/j ¼ kj/j; in X; ð1:4aÞZ

X
j/jðxÞj

2
dx ¼ 1; j ¼ 1; . . . ;m. ð1:4bÞ
To investigate ground state solutions of a multi-component BEC, [4] shows that the ground states can be

found by minimizing the energy functional E(/) with / = (/1, . . . ,/m) under conditions (1.4b), i.e.,
Minimize
/¼ð/1;...;/mÞ

Eð/Þ

subject to
R
X j/jðxÞj

2
dx ¼ 1; /jðxÞ > 0; j ¼ 1; . . . ;m;

ð1:5aÞ
where
Eð/Þ ¼
Xm
j¼1

Z
X

1

2
jr/jj

2 þ 1

2
V jj/jj

2 þ aj
4
j/jj

4

� �
þ 1

4

Xm
k;j¼1;k 6¼j

bkj

Z
X
j/kj

2j/jj
2
. ð1:5bÞ
On the other hand, Eqs. (1.4) can also be regarded as Euler–Lagrange equations of the optimization prob-

lem (1.5). Furthermore, multiplying the jth equation in (1.4a) by /j(x), and using (1.4b) and (1.5b) it is eas-

ily seen that any eigenvalue vector k = (k1, . . . ,km) and the corresponding eigenfunction vector /

= (/1, . . . ,/m) of (1.4) satisfy
Xm
j¼1

kj ¼ 2Eð/Þ þ 1

2

Xm
k;j¼1;k 6¼j

bkj

Z
X
j/kj

2j/jj
2 þ 1

2

Xm
j¼1

aj

Z
X
j/jj

4
. ð1:6Þ
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In ultracold dilute Bose gas, m different hyperfine spin states may repel each other and form separate

nodal domains, such a phenomenon, called phase separation of a multiple mixture of BEC, has been exten-

sively investigated by experimental and theoretical physicists [13,26,29]. From [3,19], a large repulsive inter-

component scattering length may cause spontaneous symmetry bifurcation which makes phase separation

happen. Here a positive and large inter-component scattering length can be obtained by adjusting the exter-
nally applied magnetic field because of Feshblack resonance [25].

For the study of numerical computation, based on schemes of [5–7], a normalized gradient flow (NGF),

monotone scheme and a time-splitting sine-spectral (TSSP) method have been developed by [4] for comput-

ing ground states of a multi-component BEC by solving time-dependent CGPEs (1.1). The NGF method

was proven to preserve energy diminishing property in the linear case [4,5]. The TSSP method is explicit,

unconditionally stable, time reversible and time transverse invariant [4]. Recently, a Gauss–Seidel-type iter-

ation (GSI) has been proposed by [14] for computing ground states of a multi-component BEC by solving

the time-independent CGPEs (1.4). It was proven that the GSI method convergent locally and linearly to a
fixed point if and only if the associated minimized energy functional problem has a strictly local minimum

at the feasible fixed point.

The main purpose of this paper is first to discretize the time-independent CGPEs (1.4) to a nonlinear

algebraic eigenvalue problem (NAEP) and to develop a structured continuation method based on the clas-

sical continuation method [2,27] for the computation of possibly all positive bound states of a multi-

component BEC. Second, in order to utilize the sparsity and the block structure of the associated NAEP,

we propose a continuation method combined with the BSOR iteration [33, pp. 594–596] and the Lanczos–

Galerkin projection method [30,31] for tracing the solution curve of the NAEP. Third, we prove that the
primal stalk of the solution curve of the NAEP coincides with the unique global minimizer of a single-com-

ponent BEC which is represented by an initial value ODE. Furthermore, we prove that the solution curve of

the NAEP will encounter a first bifurcation point at a finite value of the repulsive scattering length. For the

case of m = 2, we also prove that two identical ground states will bifurcate into two different ground states

which are symmetric with respect to some suitable axis in X.
To compare with the GSI method in [14], we note that the continuation BSOR-Lanczos–Galerkin method

is used to compute possibly all positive bound state solutions of a multi-component BEC, i.e., possibly all

eigensolutions of NAEP, in spite of that the positive bound state solution is stable for the negative gradient
flow of E(/) in (1.5), i.e., in spite of that the positive bound state solution is the ground state solution (the

minimal solution) of (1.5). On the other hand, the GSI method [14] is used to find the ground state solution

of a multi-component BEC.

This paper is organized as follows. In Section 2, we first develop a continuation BSOR-Lanczos–Galerkin

method for solving theNAEP.Then, we propose an efficient detection for testing the singularity of the solution

curve. InSection3,weprove the existence of thebifurcationof amulti-componentBEC,whenever the repulsive

scattering length becomes sufficiently large. Numerical results of positive bound state solutions of a two/three-

component BEC by solving the NAEP are presented in Section 4. Finally, a conclusion is given in Section 5.
Throughout this paper, we use the bold face letters or symbols to denote a matrix or a vector. For

u = (u1, . . . ,uN)
>, v ¼ ðv1; . . . ; vN Þ> 2 RN , u�v = (u1v1, . . . ,uNvN)

> denotes the Hadamard product of u

and v, u = u� � � ��u denotes the r-time Hadamard product of u, sub: = diag(u) denotes the diagonal matrix

of u. For A 2 RM�N , A > 0 (P0) denotes a positive (nonnegative) matrix with positive (nonnegative) entries,

A 0 (with A> = A) denotes a symmetric positive definite matrix and r(A) denotes the spectrum of A.
2. Continuation BSOR-Lanczos–Galerkin algorithm

For convenience, hereafter we assume that X in (1.4a) is contained in R2. To solve the nonlinear eigen-

value problem (1.4) numerically by continuation methods (e.g. [2,27]), it is natural to first discretize the
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differential equations in (1.4) by a finite difference method or a finite element method. Suppose that the

Laplacian operator �$2 in (1.4a) is discretized by the central difference approximation with the grid size

h. Then, due to the Dirichlet boundary condition (1.1c) the discretization matrix, denoted by A 2 RN�N cor-

responding to the operator �$2, is an irreducible and symmetric positive definite matrix with nonpositive

off-diagonal entries (i.e. an irreducible symmetric M-matrix). By 1
h uj and Vj 2 RN , respectively, are denoted

the approximations of the jth wave function /j(x) and the jth trapping potential Vj(x), for j = 1, . . . ,m. Re-

write aj and bkj in (1.4) by aj := aj/h
2 and bkj := bkj/h

2, respectively, then the discretization of (1.4), referred

to a NAEP, can be formulated as follows
Auj þ Vj � uj þ ajuj � uj þ
Xm

k 6¼j;k¼1
bkjuk � uj ¼ kjuj; ð2:1aÞ

u>j uj ¼ 1; j ¼ 1; . . . ;m. ð2:1bÞ
The energy functional E(/) in (1.5b) becomes
EðuÞ ¼
Xm
j¼1

1

2
u>j Auj þ

1

2
V>j uj þ

aj
4
u >j uj

� �
þ 1

4

Xm
k;j¼1;k 6¼j

bkju
>

k uj ; ð2:2Þ
where u = (u1, . . . ,um). The eigenvalue vector k = (k1, . . . ,km) and the associated eigenvectors {u1, . . . ,um}
satisfy
Xm

j¼1
kj ¼ 2EðuÞ þ 1

2

Xm
k;j¼1;k 6¼j

bkju
>

k uj þ
1

2

Xm
j¼1

aju
>

j uj . ð2:3Þ
To study the phase separation of a multi-component BEC, we assume that the intra- and inter-compo-

nent scattering lengths aj�s and bkj�s in (2.1a) satisfy
aj ¼ a :¼ a0 þ l0p; j ¼ 1; . . . ;m; ð2:4aÞ
bkj ¼ bjk ¼ b :¼ b0 þ m0p; k 6¼ j; k; j ¼ 1; . . . ;m; ð2:4bÞ
where a0, l0, b0 and m0 are given nonnegative constants, and p is a positive parameter. Let
x ¼ ðu>1 ; k1; . . . ; u>m ; kmÞ
>
. ð2:5Þ
Then the NAEP of (2.1) can be rewritten by the parameter-dependent form
Gðx; pÞ ¼ 0; ð2:6Þ

where G � ðG1; g1; . . . ;Gm; gmÞ : RðNþ1Þm � R! RðNþ1Þm is a smooth mapping with
Gjðx; pÞ ¼ Auj þ Vj � uj þ auj � uj þ b
Xm
k 6¼j

uk � uj � kjuj; ð2:7aÞ

gjðx; pÞ ¼
1

2
ðu>j uj � 1Þ; ð2:7bÞ
for j = 1, . . . ,m. We denote the Jacobian of G by
DG ¼ ½Gx;Gp� ¼ ½Gx;Gal0 þGbm0� 2 RM�ðMþ1Þ;
with M = (N + 1)m, and the solution curve C of (2.6) by
C ¼ fyðsÞ ¼ ðxðsÞ>; pðsÞÞ>jGðyðsÞÞ ¼ 0; s 2 J � Rg. ð2:8Þ

Here, we assume a parametrization via arc lengths is available on C. By differentiating Eq. (2.6) with

respect to s, we obtain
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DGðyðsÞÞ _yðsÞ ¼ 0;
where _yðsÞ ¼ ð _xðsÞ>; _pðsÞÞ> denotes a tangent vector to C at y(s).
Several well-known curve-tracking algorithms have been developed during the past decades, e.g., the

HOMPACK of Watson et al. [34] and the book of numerical methods for bifurcations by Govaerts [23].

Recently, Davidson [17] employed a preconditioned version of the recursive projection method in the con-

text of continuation method for computing bifurcation scenario of large scale parameter-dependent prob-

lems. In the following, we will trace the solution curve C in (2.8) by predictor-corrector continuation

methods [2,27] combined with BSOR iteration [33, pp. 594–596] and Lanczos–Galerkin projection method

[30,31], which is referred to a continuation BSOR-Lanczos–Galerkin method.

Let yi ¼ ðx>i ; piÞ
> 2 RMþ1 be a point that has been accepted as an approximating point for the solution

curve C. Suppose that the Euler predictor, i.e.,
yiþ1;1 ¼ yi þ hi _yi
is used to predict a new point yi+1,1, where hi > 0 is the step length and _yi is the unit tangent vector at yi
which is obtained by solving the linear bordered system
ð2:9Þ
with some suitable constant vector ci 2 RMþ1. The accuracy of the approximation yi+1,1 to the solution
curve C can be improved by a correction process. Typically, Newton�s method is chosen as a corrector,

i.e., the following linear bordered system
ð2:10Þ
with ql ¼ _y>i ðyiþ1;l � yiþ1;1Þ, is solved by setting yiþ1;lþ1 ¼ yiþ1;l þ dl, l = 1,2, . . . . If {yi+1,l} converges until

l = l1, then we accept yiþ1 ¼ yiþ1;l1 as a new approximation to the solution curve C.

In fact, linear systems (2.9) and (2.10) can be rewritten in the form
B f

g> c

� �
x

r

� �
¼

q

q

� �
; ð2:11Þ
where B 2 RM�M , f, g and q 2 RM . The linear system (2.11) can be easily solved by the well-known block

elimination (BE) algorithm (see e.g., [27]) when B is well-conditioned. However, near turning points or

branch points. B in (2.11) becomes nearly singular, i.e., B is ill-conditioned. Then, the linear system should
be solved by the deflated block elimination (DBE) algorithm by Chan [12], or the more efficient, backward

stable, mixed block elimination (BEM) algorithm proposed by Govaerts [21,22].

Algorithm 2.1 (Mixed block elimination (BEM)).

(i) Solve n>B = g>,

(ii) Compute d1 = c � n>f, r = (q � n>q)/d1,
(iii) Solve Bv = f,

(iv) Compute d = c � g>v, q1 = q � fr, q1 = q � cr,
(v) Solve Bw = q1,

(vi) Compute r1 = (q1 � n>w)/d,
(vii) Compute x = w � vr1, r = r + r1.
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From Algorithm 2.1, we see that the main step in (2.9) or in (2.10) is to solve a linear system of the form

Gx(y)n = g, where y = (x>,p)> and x is given in (2.5). By (2.6) and (2.7) these linear systems can be formu-

lated into the form
Bn �

B11 B12 � � � B1m

B21 B22 � � � B2m

..

. ..
. . .

. ..
.

Bm1 Bm2 � � � Bmm

266664
377775

n1
n2

..

.

nm

266664
377775 ¼

g1

g2

..

.

gm

266664
377775; ð2:12Þ
where
ð2:13aÞ
and
ð2:13bÞ
Note that the matrix B in (2.12) is symmetric.

Since only positive bound states of a multi-component BEC are of interest, the eigenvectors fujgmj¼1 in

(2.1) are restricted to be positive. By applying Perron–Fronbenius Theorem (see e.g., [10, p. 27]) to the irre-
ducible symmetric M-matrix bAj � ðAþ sVj þ auj þ b

P
k 6¼juk tÞ, we have that the eigenvalue kj in (2.1a) is

the unique minimal eigenvalue of bAj associated with the positive eigenvector uj. This implies that the matrix

Aj ¼ bAj þ 2sajuj t defined in (2.13a) is symmetric positive definite, and thus, Bjj in (2.13a) is invertible and

is a bordered matrix as in (2.11), for j = 1, . . . ,m. With this property, the linear system (2.12) can be simply

solved by the block SOR algorithm [33, pp. 594–596].

Algorithm 2.2 (Block SOR (BSOR)).

(i) Choose a suitable parameter x 2 (1,2) and starting vectors fnð0Þj g
m
j¼1, i = 0;

(ii) Repeat i: until convergence,
For j = 1, . . . ,m,

solve the linear system

Bjjn
ðiþ1Þ
j ¼ x fj �

X
k>j

Bjkn
ðiÞ
k �

X
k<j

Bjkn
ðiþ1Þ
k

" #
þ ð1� xÞBjjn

ðiÞ
j ð2:14Þ

for n
ðiþ1Þ
j by using BEM algorithm (Algorithm 2.1),

end for j;

(iii) If converges, then nj  n
ðiþ1Þ
j ðj ¼ 1; . . . ;mÞ, stop;
else i i + 1, Goto Repeat (ii).

We now reduce our problem of (2.11) to solving several symmetric linear systems of the form
Ajn
ðiÞ ¼ bðiÞ; i ¼ 1; . . . ; r; ð2:15Þ
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involving the same N · N matrix Aj but different right-hand sides b(i). Furthermore, the right-hand sides are

not available at the same time, i.e., a given right-hand side b(i) depends on the solution n(l), l = 1, . . . ,i�1, of

the previous linear systems. For this situation, Parlett [30] suggested using the Lanczos algorithm to solve

the first system and saving the generated Lanczos vectors for providing good approximate solutions to the

subsequent systems. An approximate solution to the second linear system can then be obtained by using a
Galerkin projection technique onto the Krylov subspace generated when solving the first linear system. If

the approximate solution obtained in this way is not accurate enough, it can be improved by the restarted

Lanczos–Galerkin procedure [31] which has been shown to be equivalent to the block Lanczos algorithm

[24]. By repeating the process described above, we can solve the subsequent linear systems in (2.15) after the

first linear system is solved.

Algorithm 2.3 (Lanczos–Galerkin projection method).

(i) First pass. Solve the first linear system Ajn
(1) = b(1) by q-step Lanczos algorithm (see e.g., [30]); Let

Vq = [v1, . . . ,vq] be the orthogonal Lanczos basis spanning the Krylov subspace with

v1 ¼ ðbð1Þ � Ajn
ð1Þ
0 Þ= kbð1Þ � Ajn

ð1Þ
0 k and Tq be the corresponding q · q tridiagonal matrix;

(ii) Second pass.

For i = 2, . . . ,r,

Compute r
ðiÞ
0 ¼ bðiÞ � Ajn

ðiÞ
0 with an appropriate initial n

ðiÞ
0 ,

Compute nðiÞ ¼ n
ðiÞ
0 þ VqT

�1
q V>q v

ðiÞ
0 .

If the accuracy of the approximation n(i) is not sufficient, perform a refinement (restarted or block)

Lanczos–Galerkin process (see [31] for details),

end for i.
2.1. Testing for bifurcation

Let C be the path defined in (2.8). As was described in [2,23,27] a point yðsÞ 2 C is said to be a regular

point if rankðDGðyðsÞÞÞ ¼ M , and is a singular point if rankðDGðyðsÞÞÞ 6 M � 1. For a regular point y(s),

the tangent vector _yðsÞ is uniquely determined by the linear system (2.9). We now consider that the path C
undergoes a singular point (x(s0),p(s0)) and give methods to jump over such a point. In Theorem 3.2 (see

Section 3 later!) we shall prove that dimNðGxðs0ÞÞP m� 1.

(I) Case m = 2.

One can see that in [27, p. 97] a point ðxðs0Þ; pðs0ÞÞ 2 C is a simple singular point if and only if either
ðaÞ dimNðGxðs0ÞÞ ¼ 1; Gpðs0Þ 2 RðGxðs0ÞÞ or ð2:16Þ
ðbÞ dimNðGxðs0ÞÞ ¼ 2; Gpðs0Þ 62 RðGxðs0ÞÞ. ð2:17Þ
Here, N and R denote the null and range spaces of Gx(s0), respectively.
However, case (b) of (2.17) rarely happens because in generic systems it has codimension 4, i.e., it can

only be expected in systems with four free parameters. However, it cannot be expected in a situation

of the NAEP (2.1) with equivariant parameters (see [23] for details).
(II) Case mP 3.

As in (I), for simplicity, here we only consider the case
dimNðGxðs0ÞÞ ¼ m� 1; Gpðs0Þ 2 RðGxðs0ÞÞ.
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Algorithm 2.4 (Tangent vectors at singularity).

(I) For m = 2 [27, p. 88–99]:
(i) Compute the unit right and left null vectors / and w of Gx(s0), respectively, and solve

Gx(s0)/0 = �Gp(s0) with />/0 = 0, by using sparse SVDPACK [11];

(ii) Form /1 ¼
/

0

� �
and /2 ¼

/0

1

� �
;

(iii) Solve the real vector roots fðl̂k; m̂kÞg
2
k¼1 of a11l

2 + 2a12lm + a22m
2 with

a11 ¼ w>Gxxðs0Þ//; a12 ¼ w>½Gxxðs0Þ/0 þGxp�/;
a22 ¼ w>½Gxxðs0Þ/0/0 þ 2Gxpðs0Þ/0 þGppðs0Þ�;

(iv) Form tangent vectors _ykðs0Þ ¼ l̂k/1 þ m̂k/2; k ¼ 1; 2.

(II) For m P 3:
(i) Compute the unit right null vectors /(1), . . . ,/(m� 1) of Gx(s0), and solve Gx(s0)/0 = �Gp(s0)

with /(k)>/0 = 0, k = 1, . . . ,m � 1, by using sparse SVDPACK [11];

(ii) Form /k ¼
/ðkÞ

0

� �
, k = 1, . . . ,m � 1 and /m ¼

/0

1

� �
;

(iii) Form trial tangent vectors _ykðs0Þ ¼ /k, k = 1, . . . ,m � 1 and _ymðs0Þ ¼ /m.
Now our task is to design algorithms to detect singular points of the solution curve C and to com-

pute /k�s in Algorithm 2.4 for tangent vectors. In practice, in step (iii) of the case of mP 3 we usually

choose any one trial tangent vector _ykðs0Þ, k 2 {1, . . . ,m � 1}, for following the branch of the solution

curve.

In fact, by the path following process (2.9), Algorithm 2.2 combined with Algorithm 2.3 can also be used

to compute the smallest eigenvalue in modulo of Gx(si), say l(si), and further to detect the singularity of C.

It leads to the following algorithm, which is referred to as an inverse power method.

Algorithm 2.5 (Inverse power method).

(i) Given a unit vector f0 ¼ ðf
ð0Þ>
1 ; . . . ; fð0Þ>m Þ> 2 RðMþ1Þm, and let l = 1,

(ii) Repeat l: until convergence,

Call Algorithms 2.2 and 2.3 to solve Bbfl ¼ fl�1, where B is given in (2.12). Set
fl ¼ bfl=kbflk2; lðlÞ ¼ f>l Bfl;
(iii) If converges, then l(s) l(l); else l l + 1, Goto Repeat (ii).

Let l(s1) and l(s2) be the smallest eigenvalues in modulus of Gx(y(s1)) and Gx(y(s2)), respectively, where

s1 < s2 are two consecutive parameters. If l(s1) > 0 and l(s2) < 0, then there is a s* 2 (s1,s2) such that

Gx(y(s*)) is singular. We propose the following algorithm to detect the singular point of C.

Algorithm 2.6 (Detection of singularity of C).

(i) Given l(si) the smallest eigenvalue in modulus of Gx(y(si)), i = 1,2, where l(s1) > 0, l(s2) < 0, e.g.,

jl(s1)j � jl(s2)j � 10�4.

(ii) Do Secant Method: until convergence,
	

(a) Compute y1ðs	Þ :¼ yðs	Þ ¼ yðs1Þ þ t lðs1Þ
lðs2Þ�lðs1Þ

, where t* = y(s1) � y(s2),
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(b) Perform Newton correction (2.10): until convergence (i.e., ‘ = ‘1). Solve
with q‘ ¼ t	>ðy‘ðs	Þ � y1ðs	ÞÞ,
set y‘+1(s*) = y‘(s*) + d‘, ‘ ‘ + 1, Goto (b).
(c) Compute l(s*) of Gxðy‘1ðs	ÞÞ using Algorithm 2.5,

(d) If jl(s*)j < Tol, then perform (iii), else

(e) If l(s*) > 0, s1 s*, else s2 s*, Goto (ii);
(iii) Call Algorithm 2.4 to compute the desired tangent vectors with y(s0) = y‘1(s*).

By combining Algorithms 2.1–2.6, it leads to our continuation BSOR-Lanczos–Galerkin algorithm
which can be used to compute possibly all positive bound states of a multi-component BEC.
3. Bifurcation of a multi-component BEC

For a multi-component BEC, it is well-known [3,19] that a large repulsive inter-component scattering

length may set in spontaneous symmetry breaking inducing phase separation. It was shown in [14] that

m components of positive bound states may repel each other and form segregated nodal domains as the

repulsive scattering lengths go to infinity. In fact, the NAEP of (2.1) always has identical bound state solu-

tions, i.e., u1 = � � � = um, provided that Vj = V, aj = a, bkj = b(k 6¼ j), for k, j = 1, . . . ,m. For this situation, we
shall prove that the solution curve C of (2.8) with a = a0 fixed will undergo a bifurcation point at a finite

value b = b* > 0. For m = 2, we further prove that two identical ground states will bifurcate into two dif-

ferent ground states which are symmetric with respect to some suitable axis in X. To this end, we first study

the ground states of a single-component BEC (i.e. m = 1) described by the NAEP
Auþ V � uþ au � u ¼ ku; ð3:1aÞ
u>u ¼ 1. ð3:1bÞ
The ground state solutions can naturally be solved by the continuation method. From (2.2), we see that

the associated energy functional of (3.1) becomes
EaðuÞ ¼
1

2
u>Auþ 1

2
V>u þ a

4
u >u . ð3:2Þ
Theorem 3.1 proves that the unique global minimizer of Ea(u) exists and satisfies an initial value problem
(IVP).

Theorem 3.1. The optimization problem
minfEaðuÞju>u ¼ 1; u > 0 2 RNg ð3:3Þ

has a unique global minimizer u(a) which satisfies the IVP:
_uðaÞ ¼ �A�1ðaÞu ðaÞ þ A
�1ðaÞ u

>ðaÞA�1ðaÞu ðaÞ
u>ðaÞA�1ðaÞuðaÞ

uðaÞ; ð3:4Þ
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with u(0) being the eigenvector of A + sVbto the minimal eigenvalue, where AðaÞ � Aþ sVþ 3au ðaÞt�
kðaÞIN and k(a) is the minimal eigenvalue of A + sV + au (a)b. Furthermore, uðaÞ ! 1ffiffiffi

N
p e, as a!1, where

e = (1, . . . ,1)>.

Proof. We first prove that u(a) satisfies (3.4) by continuation method. Differentiating the equation in (3.1)
with respect to a formally, we obtain
ð3:5Þ
It is easily seen that the matrix A + sVb has a positive eigenvector u(0) > 0 corresponding to the positive

minimal eigenvalue k(0), whenever a = 0. By implicit function theorem and the positivity of u(0), there
exists an a1 > 0 such that (u(a),k(a)) satisfies
ðAþ sVþ au ðaÞtÞuðaÞ ¼ kðaÞuðaÞ; ð3:6aÞ
uðaÞ>uðaÞ ¼ 1; uðaÞ > 0 ð3:6bÞ
for all a 2 [0,a1). By Perron–Fronbenius Theorem [10, p. 27], we see that the eigenvalue k(a) in (3.6a) is the

minimal eigenvalue of (A + sV + au (a)b) associated with the eigenvector u(a) > 0. Hence, the matrix

AðaÞ � Aþ sVþ 3au ðaÞt� kðaÞIN is symmetric positive definitive, for all a 2 [0,a1). Consequently, the

matrix
AðaÞ u

u> 0

� �
in (3.5) is nonsingular. By block elimination in Algorithm 2.1, the representation of

u(a) in (3.4) is easily obtained, for a 2 [0,a1). Let (u(a1),k(a1)) be the limiting point of (u(a),k(a)), as

a! a1. The point (u(a1),k(a1)) must satisfy (3.6a) with u(a1)
>u(a1) = 1 and u(a1) P 0. From Perron–

Fronbenius Theorem again follows that u(a1) > 0. By continuation method the IVP in (3.4) holds for all

a P 0.

It is easily seen that equations of (3.1) also form KKT (Karush–Kuhn–Tucker) equations of the

optimization problem (3.3). Since the KKT point (u(a),k(a)) exists for all a P 0 and Ea(u) is

pseudoconvex, by the KKT sufficient condition [9, p. 164] follows that u(a) is a global minimizer of

(3.3). The uniqueness of the global minimizer of (3.3) follows immediately from the uniqueness of the
IVP in (3.4).

Furthermore, it is easy to show that 1ffiffiffi
N
p e is the unique global minimizer of 1

4
u >u . On the other hand,

since
Ea

a
¼ 1

2a
ðu>Auþ V>u Þ þ 1

4
u >u ! 1

4
u >u ; as a!1;
this implies that the minimizer u(a) converges to 1ffiffiffi
N
p e, as a!1. h

Remark 3.1. Recently, there have been extensive numerical and theoretical studies of the time independent

GPE for ground states [8,16,18,28,32] and time-dependent GPE for dynamics [1,5,7,15,20] of a single-

component BEC. Especially, in [28] the optimization problem (1.5a) for m = 1 has been proven to have

a unique global minimizer which converges to some limiting function, as a!1. Here in Theorem 3.1,

we proved that the discretized optimization problem (3.3) has a unique global minimizer satisfying the

IVP (3.4) and has a limit 1ffiffiffi
N
p e, as a!1. Based on the result of (3.4), the solution curve of (3.1) can be

parametrized by the natural parameter a and represented by (3.5). Thus, the continuation BSOR-
Lanczos–Galerkin method developed in Section 2 can be used to compute all desired positive bound states

of a single- component BEC.
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Corollary 3.1. Let Ph be a permutation such that

ðHÞ:P>h APh ¼ A; P>h sVtPh ¼ sVt.

Then the global minimizer u(a) of (3.3) satisfies Ph(u(a)) = u(a), for a P 0. Moreover, it also holds

Phð _uðaÞÞ ¼ _uðaÞ.

Proof. By definition of Ph, it holds that
PhuðaÞ ¼ ðPhuðaÞÞ ; PhsuðaÞ tP>h ¼ sðPhuðaÞÞ t. ð3:7Þ

From Theorem 3.1, assumptions ðHÞ and (3.7) follows thatPh(u(a)) satisfies IVP in (3.4). Since the eigen-

vector u(0) (the ground state of (3.1) for a = 0) corresponding to theminimal eigenvalue ofA is invariant under

Ph, i.e.,Ph(u(0)) = u(0). By the uniqueness of IVP it follows thatPh(u(a)) = u(a), for a P 0. Then last equation

for the derivative of u(a) holds by differentiating the equationPh(u(a)) = u(a) with respect to a, directly. h

We now consider the NAEP of (2.1) for a multi-component BEC with Vj = V P 0, aj = a0 P 0 (fixed)

and bjk = bkj = b > 0 (a parameter), k 6¼ j, k, j = 1, . . . ,m, i.e.,
Aþ sVþ a0uj þ b
X
k 6¼j

uk tuj ¼ kjuj; ð3:8aÞ

u>j uj ¼ 1; j ¼ 1; . . . ;m. ð3:8bÞ
The solution curve C as in (2.8) corresponding to the NAEP (3.8) can be rewritten by
C ¼ fyðsÞ ¼ ðx>ðsÞ; bðsÞÞ>jGðyðbðsÞÞÞ ¼ 0g; ð3:9Þ

where x ¼ ðu>1 ; k1; . . . ; u>m ; kmÞ

>
.

Theorem 3.2. The solution curve C as in (3.9) undergoes at least N � m (N
 m) bifurcation points at finite

values b ¼ b	q > 0, q = 1, . . . ,N � m, Moreover, the dimension of null space of Gxðyðb	qÞÞ is at least m � 1,

q = 1, . . . ,N � m.

Proof. Since (3.8) has positive identical solutions u1(b) = � � � = um(b), for b sufficiently small, the Jacobian

matrix of (3.8) with respect to x is of the form
GxðyðbÞÞ ¼

B1 E1 � � � E1

E1 B1
. .
. ..

.

..

. . .
. . .

.
E1

E1 � � � E1 B1

2666664

3777775; ð3:10aÞ
where
ð3:10bÞ
and
ð3:10cÞ
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For this situation, equations of (3.8) become one NAEP for (u1,k1):
Au1 þ sVþ ða0 þ ðm� 1ÞbÞu1 tu1 ¼ k1u1; u>1 u1 ¼ 1. ð3:11Þ

From (3.11) follows that the matrix A1 in (3.10b) is symmetric positive definitive, for b sufficiently small.

Hence the matrix B1 in (3.10b) has N positive eigenvalues and one negative eigenvalue, and therefore,

Gx(y(b)) has Nm positive eigenvalues and m negative eigenvalues, for b sufficiently small.

From (3.10a), it is easily seen that
GxðyðbÞÞ ¼ Im � B1 þ C� E1; with C ¼

0 1 � � � 1

1 0 . .
. ..

.

..

. . .
. . .

.
1

1 � � � 1 0

2666664

3777775.

Here, ‘‘�’’ denotes the Kronecker product of two matrices. Using the fact that C has a simple eigenvalue

m � 1 and m � 1 eigenvalues �1, there exist an orthogonal matrix Q such that
Q>CQ ¼ diagfm� 1;�1; . . . ;�1g.

Multiplying Gx(y(b)) in (3.10a) by Q� IN from the right and by its transpose from the left, respectively,

we obtain that
ðQ> � IN ÞGxðyðbÞÞðQ� IN Þ ¼ diagfB1 þ ðm� 1ÞE1;B1 � E1; . . . ;B1 � E1g. ð3:12Þ

From (3.10b), (3.10c) and (3.11) follow that the matrix B1 + (m � 1)E1 is nonsingular.

If we can show that B1 � E1 has at least N negative eigenvalues (N
 m), then it must exist at least

N � m finite b	q > 0 such that Gxðyðb	qÞÞ is singular. By Theorem 3.1, we also see that x can be parametrized

by b, for all identical solutions u1(b) = � � � = um(b). That is, the solution curve C can not have a turning

point at b ¼ b	q. Hence, the solution curve C must have bifurcation points at b ¼ b	q > 0, q = 1, . . . ,N � m.

From Theorem 3.1 and (3.11), we have that limb!1su1ðbÞ t ¼ 1
N IN , i.e., for any � > 0, there is a b > 0

such that for all b > b,
1

N
IN � � < su1ðbÞ t <

1

N
IN þ �. ð3:13Þ
Let r be the maximal row sum of the off-diagonal elements of A, �a and a be the maximum and minimum

of the diagonal elements of A + sVb, respectively. By (3.13) and Gershgorin Theorem we have that
a� r þ ða0 þ ðm� 1ÞbÞ 1

N
� �

� �
< li < �aþ r þ ða0 þ ðm� 1ÞbÞ 1

N
þ �

� �
; ð3:14Þ
where li is the eigenvalue of Aþ sVþ a0u1 þ ðm� 1Þbu1 t, for i = 1, . . . ,N, with l1 = k1. This implies that
li � k1 < �a� aþ 2r þ 2�ða0 þ ðm� 1ÞbÞ. ð3:15Þ

Rewrite A1 � 2bsu1 t as in (3.10b) by
A1 � 2bsu1 t ¼ Aþ sVþ a0u1 þ ðm� 1Þbu1 t� k1Iþ 2ða0 � bÞsu1 t. ð3:16Þ

By (3.15) andGershgorin Theorem again we show that all eigenvalues ofA1 � 2bsu1 tmust be bounded by
b � �a� aþ 3r þ 2�ða0 þ ðm� 1ÞbÞ þ 2ða0 � bÞ 1

N
� �

� �
. ð3:17Þ
Since we can choose � > 0 sufficiently small and b > 0 sufficiently large so that the quantity b in (3.17)

becomes negative, the N eigenvalues of A1 � 2bsu1 t, and thus of B1 � E1, become negative. This shows that

the determinant of Gx(y(b)) change signs at least N � m times.
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Finally, since B1 � E1 becomes singular at b ¼ b	q, from Eq. (3.12) follows that dimNðGxðyðb	qÞÞÞP
m� 1. We complete the proof. h

Theorem 3.3. Let Ph be a permutation satisfy ðHÞ in Corollary 3.1 with P>h ¼ Ph. Then two identical bound

states of NAEP (3.8) for a two-component BEC (m = 2) will bifurcate into two different positive bound states

u1 and u2 at b = b* > 0 with Ph(u1) = u2.

Note that for the case mP 3, a theoretical proof is still open here. Numerical experiment shows that a

symmetry breaking of m ground/bound states will occur at a finite value b = b*.

Proof. Let G(x,b) = 0 be defined in (2.6) and (2.7) corresponding to (3.8), and let u1(b) = u2(b) be the

identical solutions, for b sufficiently small. From (3.10) and (3.5) by replacing u(a0 + b) by u1(b), we

have
ð3:18Þ
Then �u1 � ð _u>1 ðbÞ;� _k1ðbÞ; _u>1 ðbÞ;� _k1ðbÞ; 1Þ> is a natural tangent vector of the solution curve C of (3.9)

for the identical solutions. Since by Corollary 3.1 and assumption ðHÞ we have PhAPh = A and Phu1 = u1
for b sufficiently small, the matrix bA1 � A1 � 2bsu1 t satisfies Ph

bA1Ph ¼ bA1, where A1 is defined in (3.10b).

Hence, the eigenvectors, say n1 of bA1 corresponding to the eigenvalues in increasing order are alternating

symmetric (i.e., Phn1 = n1) and anti-symmetric (i.e., Phn1 = �n1). In fact, by the definition of bA1 one can
show that bA1u1 ¼ 0 for b = a0, but B1 � E1 is nonsingular for b = a0. Therefore, there is a b* > a0 and

an anti-symmetric null vector n1 2 RN of bA1 at b = b* as in Theorem 3.2. That is,
ðB1 � E1Þ
n1
0

� �
¼ 0; for b ¼ b	 > 0. ð3:19Þ
Consequently, it holds
GxGb½ �

n1
0

�n1
0

0

26666664

37777775 ¼ 0. ð3:20Þ
Furthermore, from Corollary 3.1 it holds that _u>1 n1 ¼ 0 because _u1 is symmetric, therefore, the vec-

tor �n1 � ðn>1 ; 0;�n
>
1 ; 0; 0Þ

>
and �u1 are mutually perpendicular at the bifurcation point b = b*. This coin-

cides with case (I) of (2.16). Hence the vector �n forms another tangent vector of C. Since Phn1 = �n1,
we let
y1 ¼

u1 þ �n1

k1
u1 � �n1

k1
b

26666664

37777775 �
v1

k1
Phv1

k1
b

26666664

37777775 ð3:21Þ
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be the prediction vector for the Newton correction (2.10), where � is sufficiently small and b � b*. From
(3.7) the linear bordered system of (2.10) becomes
ð3:22Þ
where Ph ¼
Ph 0

0 1

� �
, d; d̂1 2 RNþ1,
ð3:23aÞ

ð3:23bÞ
and
Gðy1Þ ¼ Av1 þ V � v1 þ a0v1 þ bðPhv1Þ � v1 � k1v1. ð3:23cÞ

Expanding (3.22), we get equations
B1d1 þ E1d̂1 ¼ g1; ð3:24aÞ
E1d1 þPhB1Phd̂1 ¼ Phg1; ð3:24bÞ
where
g1 ¼
�Gðy1Þ

0

� �
� j

v1 � ðPhv1Þ
0

" #
.

Multiplying (3.24b) by Ph from the left and using the fact that PhE1 ¼ E1Ph we obtain
ðB1 � E1PhÞðd1 �Phd̂1Þ ¼ 0. ð3:25Þ

Since the Jacobian matrix in (3.22) is nonsingular for some b � b* and b 6¼ b*, the matrix ðB1 � E1PhÞ is

nonsingular for b � b*. From (3.25) follows that bd1 ¼ Phd1. This implies that starting with y1 given in

(3.21), we always have a symmetric correction by each Newton step in (3.22), i.e.,
ylþ1 ¼ yl þ
d1

Phd1

j

264
375; l ¼ 1; 2; . . . . ð3:26Þ
If � in (3.21) is chosen sufficiently small, then the Newton correction (3.26) will converge to positive

bound state solutions
u1
k1

� �
and

u2
k1

� �
lying on the solution curve C of (3.8) (m = 2) with u2 = Ph(u1). h

Remark 3.2. Eq. (3.19) in the proof of Theorem 3.3 shows that if the b* is the first singular point which we
undergo by the path following, then two identical ground states will bifurcate into two different ground

states u1 and u2 with u2 = Ph(u1).
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4. Numerical examples

In Section 2, we developed a continuation BSOR-Lanczos–Galerkin method which can be utilized to

compute possibly all positive bound states of a multi-component BEC. The solution curve of (2.6) is traced

by the proposed continuation method implemented by a MATLAB V6.5 (16 digits) on an Intel Pentium 4
Processor. The tolerance of each step in Newton correction (2.10) is chosen to be Tol = 10�8.

In physical applications and numerical simulations we first study the bifurcation of the NAEP (2.1) un-

der assumptions (2.4) in the following four cases for m = 2.

Case 1: a1 = a2 ” a0 (i.e., l0 = 0) fixed, b12 = b21: = b > 0 (parameter),

Case 2: b12 = b21 ” b0 (i.e., m0 = 0) fixed, a1 = a2: = a > 0 (parameter),

Case 3: a1 = a2: = a0 + l0p, b12 = b21: = b0 + m0p, l0 < m0, p > 0 (parameter),

Case 4: a1 = a2: = a0 + l0p, b12 = b21: = b0 + m0p, l0 > m0, p > 0 (parameter).

Example 4.1. Let m = 2, X = [�5,5] · [�4.8,4.8], V1 = V2 = x2 + y2. The uniform mesh size h of the grid

domain Xh is chosen by h = 0.1. Let Ph denote the symmetric reflection of Xh with respect to y-axis, i.e.,

Ph(Xh) = Xh. Furthermore, it holds that P>h APh ¼ A and P>h sV1tPh ¼ sV1t, where A is the discretized
approximation of �$2 by the standard central finite difference.

In Fig. 1, we plot the bifurcation curves of the NAEP (2.1) for a 2 (0,15) and b 2 (0,28) in solid lines.

Then along the four different dot line we compute the bifurcation diagrams of (2.1) of the following four

cases.
Fig. 1. Bifurcation curves of NAEP.
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Case 1. For a0 = 2, b12 = b21 = b > 0: In Figs. 2(a) and (b), we plot the bifurcation diagrams of positive

bound states of NAEP (2.1) versus the repulsive scattering length b, for b 2 (0,28) and b 2 (93,125),

respectively. Here the nodal domains of positive bound state solutions are attached near the solution

curves. The NAEP undergoes the bifurcation at singular points b	1 ¼ 6.56, b	2 ¼ 11.55, b	3 ¼ 14.34,

b	4 ¼ 24.53, b	5 ¼ 95.48, b	6 ¼ 96.84, b	7 ¼ 98.43, b	8 ¼ 113.66, b	9 ¼ 117.27, respectively. Two new born
positive bound solutions u1 and u2 satisfy Ph(u1) = u2.

Furthermore, in Figs. 2(c) and (d), we plot the solution curves of eigenvalues and the associated solu-

tion curves of energy versus b, for b 2 (0,28) and b 2 (93,125), respectively. In addition, the level sets of

two bound state solutions are attached near the solution curves of energy.

FromFigs. 2 andTheorem3.3,weobserve that for 0 6 b < b	1, theNAEP (2.1) has only identical ground

state solutions, and undergoes a bifurcation point at b ¼ b	1, so that the ground state solutions begin to sep-
arate for b > b	1. Since b > 0 is a repulsive scattering length, it is expected that the ground state solutions of

(2.1) should be little by little mutually separated when this bifurcation branch is traced with continually
increasing b. The structure of the phase separation will finally reach a stage of totally disjoint nodal

domains, when b approaches to 105. Next, we come back to the bifurcation point b	1 on the primal stalk
. 2. (a) Bifurcation diagram of NAEP for a0 = 2, b 2 (0,28). (b) Bifurcation diagram of NAEP for a0 = 2, b 2 (93,125). (c) Solution

ve of eigenvalues and energy for a0 = 2, b 2 (0,28). (d) Solution curve of eigenvalues and energy for a0 = 2, b 2 (93,125).
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and trace the solution curve with identical bound state solutions for b > b	1. By path following, we will

undergo a sequence of bifurcation points fb	i g
9

i¼2 on the primal stalk. For each bifurcation branch at b	i ,
if we trace the solution curve with b > b	i , a new structure of positive bound state solutions will be found.

Case 2. For b0 = 15, a1 = a2 = a > 0: In Fig. 3(a), we plot the bifurcation diagram of positive bound state

solutions of NAEP (2.1) for a 2 (0,15). We see that the NAEP undergoes the bifurcation at singular
points a	1 ¼ 10.69, a	2 ¼ 5.16, a	3 ¼ 2.71. In Fig. 3(b), we plot the associated solution curves of eigenvalues

and energy versus a, for a 2 (0,15). Note that here we follow the solution curves of NAEP along a
decreasingly.

From Figs. 3, we observe that the NAEP (2.1) has identical ground state solutions. For a	1 < a 6 15

and undergoes a bifurcation point at a ¼ a	1 so that the ground state solutions separate into two solutions

symmetrized with respect toPh. Then, we follow the solution curve on the primal stalk for a < a	1 and we

will undergo a sequence of bifurcation points fa	i g
3

i¼2. For each bifurcation branch at a	i , if we trace the
solution curves with a < a	i , a new structure of positive bound state solutions will be found.

In light of the bifurcation curves in Figs. 1, 2(a) and 3(a), we observe that the bifurcation diagram of

case 2 for increasing a is somewhat like a reverse diagram of the bifurcation diagram of case 1 for

increasing b.
Case 3. For a0 = 0, b0 = 0, l0 = 0.1 and m0 = 1: In Fig. 4(a) and (b), we plot the bifurcation diagram of

NAEP (2.1), and the associated solution curves of eigenvalues as well as energy, respectively, versus p,

for p 2 (0,28). The NAEP undergoes the bifurcation at p	1 ¼ 5.16, p	2 ¼ 10.48, p	3 ¼ 13.84, p	4 ¼ 25.05.In

light of the bifurcation curves of NAEP in Fig. 1, we observe that the bifurcation diagram of case 3 is

quite similar to that of case 1. Only difference is that the bifurcation point of case 3 occurs later then that
of case 1.

Case 4. For a0 = 0, b0 = 0, l0 = 1 and m0 = 0.5: In Fig. 5, we plot the bifurcation diagram of NAEP (2.1),

for p 2 (0,15) and show that there is no bifurcation for this trivial case.

Example 4.2. Let m = 3, X = [�5,5] · [�4.8,4.8], V = V = V = x2 + y2. The mesh size is the same as in
1 2 3

Example 4.1. We consider the case of that a1 = a2 = a3 = 0.1, bkj = b > 0 (parameter), for k 6¼ j, k, j = 1, 2, 3.

Solutions and bifurcations of NAEP (2.1) are computed by BSOR-Lanczos–Galerkin algorithm. Here by

path following, we follow the solution curve at each bifurcation point only along one trial tangent vector
obtained in Algorithm 2.4. Slight different from Example 4.1, for convenience and for simplicity, we omit
Fig. 3. (a) Bifurcation diagram of NAEP for b0 = 15, a 2 (0,15). (b) Solution curve of eigenvalues and energy for b0 = 15, a 2 (0,15).



Fig. 4. (a) Bifurcation diagram of NAEP for a0 = 0, b0 = 0, l0 = 0.1 and m0 = 1. (b) Solution curve of eigenvalues and energy for a0 = 0,

b0 = 0, l0 = 0.1 and m0 = 1.

Fig. 5. Bifurcation diagram of NAEP for a0 = 0, b0 = 0, l0 = 1 and m0 = 0.5.

Fig. 6. m = 3. Solution curve of eigenvalues versus b for b 2 (8.7,51).

456 S.-M. Chang et al. / Journal of Computational Physics 210 (2005) 439–458



Fig. 7. m = 3. Solution curve of energy versus b for b 2 (8.7,51).
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the bifurcation diagram but plot the solution curve of eigenvalues for b 2 (8.7,51) and attach the nodal

domains of positive bound state solutions near the corresponding eigenvalues in Fig. 6. Furthermore, we

plot the solution curve of energy for b 2 (8.7,51) and attach the level sets of positive bound states near the

corresponding energy in Fig. 7.
5. Conclusions

In this paper, we developed a continuation BSOR-Lanczos–Galerkin method for the computation of po-

sitive bound states of a multi-component BEC. The bifurcation diagram of positive eigenvectors/eigen-

values of NAEP and the associated energy functional of the time-independent CGPEs is traced by the

proposed continuation method. Numerical experience shows that our method performs reliably and effi-
ciently. Different from NGF, TSSP and GSI methods for the computation of the ground states of a mul-

ti-component BEC only, the continuation method is proposed from the viewpoint of a nonlinear eigenvalue

approach, which can be used for computing all possible positive bound states of a multi-component BEC.

We proved that a phase separation of m ground/bound states will occur at a finite value of the repulsive

scattering length. For a two-component BEC, we also proved that two identical ground/bound states will

bifurcate into different Ph-symmetry ground/bound states. In the future, we are interested in proving the

existence of the Ph-symmetry phase separation for the ground/bound states of a multi-component BEC

(mP 3).
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